Skip to main content

ए आई यानी गैर-कुदरती समझ

 एकलव्य की विज्ञान की खबरों वाली पत्रिका 'स्रोत' के दिसंबर अंक में Artificial Intelligence पर मेरे चार लेख आए थे। यहाँ डाल रहा हूँ। किसी के काम आए तो मेरे नाम के साथ ज़रूर इस्तेमाल करें। 

Artificial Intelligence , ए आई यानी गैर-कुदरती समझ या कृत्रिम मेधा - 1

आजकल हर कहीं 'ए आई' का बोलबाला है। आखिर यह ए आई क्या बला है? चेक नाटककार कारेल चापेक ने 1920 में 'आर यू आर' नामक नाटक लिखा था, जिसमें रोसुमोवी यूनिवरसालनी रोबोती (Rossumovi Univerzální Roboti) नामक कंपनी का जिक्र है, जो गैर-कुदरती इंसान जैसी दिखती रोबो मशीनें बनाती है। तब से मशीनों में इंसान जैसी काबिलियत की कल्पना पर गाहे-बगाहे चर्चाएँ होती रही हैं। पिछली सदी में पचास के दशक में ये चर्चाएँ कल्पनालोक से निकल कर विज्ञान के खित्तों में संजीदा सवाल बन कर सामने आईं, जब पहले आधुनिक कंप्यूटर बनने लगे थे। इनमें अर्द्ध-चालक सिलिकॉन की टेक्नोलोजी से बने ट्रांज़िस्टरों की मदद से तेजी से गणनाएँ मुमकिन होने लगी थीं। जैसे-जैसे कंप्यूटर टेक्नोलोजी गणनाओं से इतर तमाम दूसरे खित्तों में प्रभाव डालने लगी और सूचना यानी इन्फॉर्मेशन टेक्नोलोजी का इंकलाब बढ़ता चला, ए आई पर शोध भी तेज़ी से बढ़ता रहा। नई-नई मशीनें बनीं, खास तौर पर फिल्मों में इन्हें बढ़ा-चढ़ा कर दिखलाया गया। 'रोबो' लफ्ज़ घरेलू बातचीत का हिस्सा बन गया। हाल में कोरोना के लॉक-डाउन के दौरान हमारे मुल्क में भी कुछ खास किस्म की मशीनें, जिन्हें रोबो सफाई मशीनें कहा जाता है, बड़ी तादाद में बिकीं। कई घरों में ऐसी मशीनें आ गईं, जो देखने में छोटे स्पीकर जैसी हैं, और गीत-संगीत जैसे तरह-तरह के हुक्म बजाती हैं। दुनिया के स्तर पर बड़ी कामयाबियों में शतरंज खेलने वाली मशीनें शामिल हैं, जिन्हें अब कोई इंसान खेल में हरा नहीं सकता है। मेडिकल की पढ़ाई में रोबो का इस्तेमाल आम हो गया है, और हर दिन किसी नई खोज का पता चलता है। इंसानी काबिलियत से कहीं परे इकट्ठा किए गए आँकड़ों से मानीख़ेज़ जानकारी ढूँढ निकालने का काम कंप्यूटर कई दशकों से कर ही रहे हैं, जिससे नई दवाएँ बनाने में बड़ी तरक्की हुई है। भली बातों के साथ तबाही के औजारों में भी ए आई का इस्तेमाल हो रहा है और नए किस्म के कंप्यूटर से चलने वाले ड्रोन या लेज़र-गन या मिसाइल आदि अब आम असलाह में शामिल हो गए हैं, जिनके जरिए कोई मुल्क धरती पर कहीं भी कहर बरपा सकता है और जान-माल को नुक्सान पहुँचा सकता है। 

जाहिर है कि ए-आई का ताना-बाना पूरी तरह कंप्यूटर टेक्नोलोजी के साथ जुड़ा है। चूँकि कंप्यूटर हर कहीं है, मसलन मोबाइल फ़ोन से लेकर माली लेन-देन आदि हर खित्ते तक यह पहुँच चुका है, इसलिए ए-आई भी हर कहीं है। इसलिए  ए-आई के बुनियादी सवाल महज टेक्नोलोजी तक रुके नहीं हैं। ए-आई का सबसे बुनियादी सवाल दरअसल मशीन को इंसानी इल्म कैसे मिले यह नहीं है, बल्कि इंसान या दूसरे जानवरों को को कैसे एक मशीन की तरह समझा जा सके, यह है। साथ ही उन हालात की खोज करना भी एक बड़ा सवाल है, जिसमें न सिर्फ ज़िंदा, बल्कि कभी-कभी बेजान लगती चीज़ें भी कुछ ऐसा क़माल कर जाती हैं, जिससे कुछ ज़िंदा होने जैसी हरकतें दिखती हैं। ऐसी चीज़ों को एजेंट कहा जाता है। एजेंट किसे कहें, वो क्या कर सकते हैं, ये सवाल विज्ञान और टेक्नोलोजी के तो हैं, पर साथ ही गहन दार्शनिक सवाल भी हैं। लंबे अरसे तक इंसान की ज़हनी इल्म या इंटेलिजेंस और साथ ही चेतना या कॉंसशनेस के सवाल मूलत: दार्शनिक सवाल रहे हैं। पिछले तीस-चालीस सालों में ज़हन और चेतना पर वैज्ञानिक समझ बढ़ने के साथ अब इन सवालों में विज्ञान का हस्तक्षेप अहम हो गया है। 

'एजेंट' शब्द से कल्पना में कोई इंसान सा आता है, जैसे सेल्स-एजेंट। पर ए-आई में एजेंट का मतलब ऐसा कुछ भी हो सकता है, जिससे कोई कारवाई शुरू हो जाए, मसलन वह रोबो जैसी मशीन हो सकती है जो भौतिक स्तर पर अपने इर्द-गिर्द हरकत करती हो, या वह महज एक कंप्यूटर-प्रोग्राम हो सकता है, जो कीबोर्ड पर बटन दबाकर लिखा गया हो या जिसे किसी और कंप्यूटर-प्रोग्राम के जरिए लिखा गया हो और जिसे सक्रिय कर कोई कारवाई शुरू हो सकती है। यानी एजेंट असली या आभासी दोनों हो सकते हैं। जाहिर है कि क्या असल है और क्या आभासी यह तय करना हमेशा आसान नहीं होतै है। एक रोबो भी आखिर किसी प्रोग्राम द्वारा ही चल रहा होता है, तो उसकी हरकत को आभासी भी कहा जा सकता है। यहीं पर चेतना के विज्ञान के साथ ए-आई की टक्कर होती है। दर्शन का एक चिरंतन सवाल है कि हम जो कुछ करते हैं, क्या वह अपनी मर्जी से करते हैं या कोई और हमसे यह करवाता है। हम जानते हैं कि सही-ग़लत हर तरह के खयाल हमारे मन में आते हैं, पर क्या करना है और क्या नहीं, यह फैसला हमारे हाथ होता है। एक रोबो ऐसा फैसला नहीं कर सकता है। ऐसे दावे किए गए हैं कि हाल के बने रोबो में इस तरह के फैसले लेने की काबिलियत मुमकिन हो पाई है, पर ऐसे दावे अभी तक ग़लत साबित होते रहे हैं। 

इंसानों में भी एजेंटों जैसी फितरत पाई जाती है। जैसे एक चींटी को अपने आप में समझना मुश्किल होता है, मजदूर चींटियों और रानी समेत पूरे चींटी समाज को देखने पर ही पता चलता है कि कतार में जा रही चींटियाँ आखिर क्या कर रही हैं, इसी तरह अकेले में एक इंसान को जानकर हम सामाजिक, जातिगत या राष्ट्रवादी गतिविधियों को नहीं समझ सकते हैं। समूह में एजेंट क्यों खास तरह की हरकतें करते हैं, इनको समझना भी ए-आई में चल रहे शोध का विषय है। 

आम तौर पर लोग ए-आई का मतलब महज तरह-तरह की रोबो मशीनों को समझते हैं, जिनका अलग-अलग खित्तों में इस्तेमाल हो रहा है। वैज्ञानिक इसे आम या वीक (WEAK)  ए-आई कहते हैं।  'वीक' का मायने कमज़ोर होता है, यानी इसमें जिन सवालों पर काम होता है, वे महज टेक्नोलोजी की बढ़त और बेहतरी के सवाल हैं। इसके बरक्स अहम या स्ट्रॉंंग (STRONG) या मजबूत ए-आई चेतना के विज्ञान से जुड़ता है। यहाँ इंसान को मशीन की तरह सामने रखते हुए मशीन में इंसानी इल्म और समझ कैसे लाई जाए, इस पर काम होता है। इल्म और समझ के साथ चेतना, नैतिकता और तमाम जज़्बात भी जुड़ते हैं। जाहिर है कि ये बड़े मुश्किल सवाल हैं, इसीलिए इसे स्ट्रॉंंग ए-आई  कहा जाता है। 

ऐसा नहीं कि वीक ए-आई में इंसानी इल्म पर काम नहीं होता है, पर वहाँ इल्म और समझ के किसी एक पक्ष को सैद्धांतिक रूप से समझ कर कंप्यूटर प्रोग्राम के द्वारा उसे मशीन में डालने की कोशिश होती है। जैसे बगैर ड्राइवर से चलने वाली गाड़ियों में तरह-तरह के सेंसर लगे होते हैं, जो सड़क पर आ रहे अवरोधों को कंप्यूटर में दर्ज करते हैं, ताकि उनसे बचाव या उन्हें दरकिनार करने के तरीके अपनाए जा सकें। लाल या हरी बत्ती को दर्ज कर सही वक्त पर रुकना या आगे चलना मुमकिन हो सके। बैटरी खत्म हो रही हो तो अपने आप वापस चार्जर तक जाना भी ऐसी मशीनें कर लेती हैं। पर ये इंसानी इल्म के एक ही पक्ष यानी आवागमन पर काम करती मशीनें हैं। एक इंसान गाड़ी चलाते हुए कई विकल्पों को सोचता रहता है, बीच रास्ते में कहीं जाने न जाने के फैसले बदल सकता है, देर तक रुकने या चलते रहने के फैसले ले सकता है, और यह सब कुछ पहले से तय नहीं होता है। एक गाड़ी इंसानी ज़हन की इन जटिलताओं को कैसे अपनाए और उनको हर पल कैसे हल करे, ये स्ट्रॉंंग ए आई के सवाल हैं। 

यह ज़रूरी नहीं है कि ए आई के तहत बनाई मशीनें हमेशा इंसानी ज़हन और समझ पर ही आधारित हों। आखिर एक कंप्यूटर जिस विपुल परिमाण में आँकड़े समेट सकता है और जितनी तेज़ी से गणनाएँ कर सकता है, वह इंसान की काबिलियत से कहीं ज्यादा है। ऐसा मुमकिन है कि हमारे ज़हन अपने आकार और अंदरूनी खाके की वजह से इल्म के एक दायरे में बँधे हैं और ए-आई कभी ऐसी मशीनें बना दे जो समझ में इंसानों से कहीं आगे की हों। आम ए-आई में इंसान और दीगर जानवरों में मौजूद समझ की बुनियाद और दायरों की खोज की जाती है। इसी का नतीजा वो तमाम मशीनें हैं, जिनमें से कुछ का जिक्र ऊपर किया गया है और जिनके जरिए हमारी ज़िंदगी भौतिक रूप से बेहतर हुई है। साथ ही इंसान के ज़हन को मशीनों के साथ जोड़कर सुपर-इंटेलिजेंट इंसान की कल्पना पर भी काम हो रहा है। ज़हन की प्रक्रियाएँ न्यूरल आवेशों या इंपल्स के जरिए होती हैं जो कंप्यूटर में इस्तेमाल होते चिप की तुलना में बहुत ही धीमी गति से चलते हैं। पिछले कुछ दशकों से शरीर में इलेक्ट्रॉनिक चिप इंप्लांट कर कुछ खास तरह की काबिलियत बढ़ाने पर काम हुआ है। आम तौर पर ऐसे इंप्लांट शिनाख़्त के लिए गए हैं, पर ऐसे भी इंप्लांट हुए हैं, जिनसे हमारी ज़हनी काबिलियत बढ़ती है, जैसे हाथ या उँगलियाँ हिलाकर पैसों का लेन-देन करना, आदि (जैसे हम गूगल-पे या क्रेडिट कार्ड से करते हैं)।  

मशीनों की कामयाबी से ज़हन के काम करने के तरीकों पर भी समझ बढ़ती है। इससे इल्म के दीगर विषयों, जैसे फलसफा, मनोविज्ञान, भाषाविज्ञान और ज़हनी-विज्ञान या न्यूरोसाइंस में भी तरक्की होती है। ये सारे विषय और ए-आई अक्सर परस्पर गड्डमड्ड होते हैं। खास कर मनोविज्ञान और चेतना के विज्ञान का ए-आई से गहरा रिश्ता है। साथ ही सामाजिक और सियासी खित्तों में भी ए-आई की घुसपैठ से बड़े बदलाव हो रहे हैं और तरह-तरह के तनाव बढ़ रहे हैं। माल उत्पादन के क्षेत्र में ए-आई यानी रोबो मशीनों के इस्तेमाल से अधेड़ कामगारों की नौकरी से छंटाई बढ़ी है और इसका सीधा असर सियासत पर पड़ा है। मसलन 2016 में अमेरिका में ट्रंप के प्रेसिडेंट चुने जाने के पीछे भी ए-आई की वजह से लोगों में बढ़ती असुरक्षा की भावना कुछ हद तक जिम्मेदार थी। दूसरी ओर सर्विस-सेक्टर यानी सेवा (जैसे ऑन-लाइन खरीद-फरोख़्त आदि) की बढ़ोतरी में ए-आई की अहम भूमिका है। अगले लेखों में हम ए-आई से जुड़े दीगर विज्ञान और दर्शन के मसलों पर चर्चा करेंगे।

*Artificial Intelligence, ए-आई यानी गैर-कुदरती समझ या कृत्रिम मेधा - 2

पिछले लेख में हमने रोबोट और कंप्यूटर का जिक्र किया था। सत्तर साल पहले अपने शुरूआती दौर में रोबोट-विज्ञान या रोबोटिक्स कंप्यूटरों पर निर्भर नहीं होता था, क्योंकि तब आज जैसे तेज़ रफ्तार से चलने और बड़ी तादाद में आँकड़े सँजोने वाले कंप्यूटर होते नहीं थे। जैसे एक क्रेन बिजली से काम करती है, ऐसे ही रोबोट मशीनें बनाई जाती थीं, जो सामान उठाने, उतारने या खतरनाक जगहों में (जैसे बारूदी सुरंगों से निपटना या रेडियो-सक्रिय सामग्री को समेटना) इंसान की मदद के काम आएँ। यानी तब रोबोट महज़ आम मशीनें थीं जिनमें से कुछ मनोरंजन के लिए भी बनाई गई थीं , जो इंसान जैसी दिखती थीं। 

कंप्यूटर टेक्नॉलॉजी में दिन दूनी रात चौगुनी रफ्तार से तरक्की हुई। 1965 में  इलेक्ट्रॉनिक्स इंजीनियर और कारोबारी गॉर्डन मूर ने कहा था कि हर साल में माइक्रोचिप में ट्रांज़िस्टर की तादाद दुगुनी हो जाएगी और फिर 1975 में उन्होंने अनुमान लगाया था कि ऐसा हर दो साल में होगा। - आँकड़े या सूचना सँजोने और तेज़ रफ्तार से सवाल हल करने या सूचना की प्रोसेसिंग दोनों में इसी रफ्तार से बढ़त हुई है। नतीजतन हर विधा की तरह  रोबोटिक्स में भी कंप्यूटरों का इस्तेमाल बढ़ गया। 

अस्सी के दशक में अमोनिया और मीथेन जैसे छोटे अणुओं से एमिनो एसिड जैसे बड़े अणुओं के बनने से लेकर आखिरकार जीवन के मुमकिन हो पाने की समझ आधी सदी पहले से बनी थी। उसी आधार पर मानव-निर्मित जीवन या आर्टीफिशियल लाइफ पर बहुत काम हुआ। कंप्यूटर पर खेलने वाले प्रोग्राम लिखे गए – जैसे एक खेल का नाम 'गेम ऑफ लाइफ' था, जिसमें टुकड़े आपस में टकराकर छोटे-बड़े होते और आखिर में बड़े आकार के बन जाते। बाद में यह भी ए आई का हिस्सा बन गया।

मनोविज्ञान और  ए-आई – इन दोनों विषयों के बुनियादी सवाल एक जैसे हैं। आज मनोविज्ञान की एक शाखा जिसे अब अपने-आप में अलग विषय जाना जाता है, संज्ञान का विज्ञान या कॉग्निटिव साइंस, को ए-आई की शाखा माना जाता है। इसमें यह समझने की कोशिश होती है कि हम किसी चीज़ को समझते कैसे हैं यानी जो भी जैव-रासायनिक प्रक्रियाएँ हमारे जिस्म में होती हैं, वे संज्ञान तक कैसे बढ़ जाती हैं। क्या दिमाग भी एक कंप्यूटर है?  ऐसे खयालों ने ए-आई वैज्ञानिकों में यह मुगालता पैदा कर दिया कि बड़ी जल्दी ही समूचा मनोविज्ञान कंप्यूटर प्रोग्रामों की तरह बूझ लिया जाएगा। जाहिर है कि ये सवाल दार्शनिक हैं और सदियों से दुनिया भर में चिंतकों ने इन पर माथा खपाया है।

दर्शन-शास्त्र में हमेशा से ही यह बहस रही है कि जिस्म और मन का क्या रिश्ता है। क्या मन और जिस्म अलग-अलग हैं या जिस्म से अलग मन का कोई वजूद नहीं है? सत्रहवीं सदी में यूरोप में आधुनिक विज्ञान की शुरूआत में रेने देकार्ते ने कहा कि जिस्म और मानस अलग चीज़ें हैं। आज ऐसा नहीं माना जाता, हालाँकि इस पर कोई आखिरी समझ अभी भी नहीं बन पाई है। कई ए-आई वैज्ञानिक मानते हैं कि दिमाग और मन का रिश्ता कंप्यूटर और प्रोग्राम की तरह है। यानी कंप्यूटर लोहे-लक्कड़ से बनी मशीन है, पर प्रोग्राम के बिना वह कुछ भी नहीं है, इसी तरह जिस्म में दिमाग जैव-रासायनिक तत्वों से बना हार्डवेयर है, पर कुछ ऐसा है जो मन या सॉफ्टवेयर है, जो उसका वजूद मानीख़ेज़ बनाता है। जैसे प्रोग्राम महज लिखा जाता है, उसके भौतिक वजूद पर बात बेमानी है, इसी तरह मन के बारे में कुछ कह पाना मुश्किल है।

आखिर असली और गढ़ी गई गैरकुदरती बुद्धि या समझ किस मायने में अलग हैं? हर जानवर एक हद तक सोचता-समझता है और जीवन के धागे बुनता है, पर क्या यही बुद्दि है? इस सवाल का कोई साफ जवाब नहीं है। ए-आई में बुद्धि को जीवन में कुछ भी कर पाने के लिए कंप्यूटर की तरह गणनाऐँ या सूचनाओं का लेन-देन माना जाता है। इसमें दीगर जानवरों की तुलना में इंसान ज्यादा काबिल है। मसलन भाषा जैसी काबिलियत दूसरे जानवरों में कम विकसित है। ए-आई के शुरूआती दौर में सैद्धांतिक पक्ष को साइबरनेटिक्स कहा जाता था, जिसमें यह माना गया कि इंसान, दीगर  जानवर, और मशीनें, इन सब को बाँधने वाले क़ायदे एक जैसे हैं, हालाँकि वे अलग-अलग चीज़ों से बने अलग ढाँचे हैं। इसी आधार पर ऐसे रोबो बनाए गए जो कुछ हद तक अपने आप काम करते हैं, जैसे चक्कों पर चलने वाले रोशनी के पास या दूर जाने वाले कछुए जैसे रोबोट, जो बैटरी का चार्ज खत्म होने पर खुद से रीचार्ज के लिए बिजली के सॉकेट तक आ जाते हैं। रोचक बात यह है कि ऐसे रोबोट के बारे में पहले से अनुमान लगाना मुश्किल है कि वे कब कहाँ जाएंगे या कब रीचार्ज करेंगे यानी ऐसी जटिल बातें वो अपने आप तय कर रहे हैं। पर यह काबिलियत वह बुद्धि नहीं है, जिसे इंटेलिजेंस कहते हैं। बुद्धि में भाषा-ज्ञन, याददाश्त, सीखने की काबिलियत, तर्कशीलता आदि बातें शामिल हैं। रोबोट परिवेश में मौजूद चीज़ों के मुताबिक अपना व्यवहार बदलते हैं, जबकि बुद्धि में कुछ अंदरूनी है। भाषाविज्ञानी नोम चोम्स्की का मानना है कि हर कोई जैविक रूप से भाषा सीखने की काबिलियत लेकर पैदा होता है। इसके बरक्स परिवेश में मौजूद चीज़ों या तजुर्बों का भाषाज्ञान पर असर होता तो है, पर कम होता है। ए-आई का बहुत सारा शोध इस सोच पर हो रहा है कि ऐसी काबिलियत जिस्म की अंदरूनी प्रक्रियाओं से ही बनती है, जबकि रोबोटिक्स में परिवेश के साथ जद्दोजहद, यानी परविवेश के मुताबिक मशीन को गढ़ना एक लगातार चल रहा संघर्ष है। यानी  रोबोटिक्स का ज्यादातर वीक ए-आई ही है। 

ये ए-आई की दो अलग धाराएँ हैं। एक संज्ञान का विज्ञान और दूसरी धारा है रोबोट मशीनें। पहली धारा में कंप्यूटेशन यानी अमूर्त गणनाओं को ही संज्ञान का आधार माना गया है। इसमें कंप्यूटेशन के दार्शनिक आधार को समझना लाजिमी है, जो एक विकसित, पर साथ ही अनसुलझा मु्द्दा है। मैकलो और पिट्स नामक दो वैज्ञानिकों ने यह दिखलाया था कि दिमाग में काम कर रहे न्यूरॉन का खाका सैद्धांतिक रूप से कंप्यूटर के अंदरूनी खाके की तरह है। न्यूरॉन कंप्यूटर में गणनाओं के लिए बने लॉजिक गेट की तरह काम करते हैं और इनका एक जैसा इस्तेमाल हो सकता है। दिमाग समेत ऐसी किसी भी मशीन को एक बुनियादी कंप्यूटर की तरह समझा जा सकता है। मशहूर गणितज्ञ और दार्शनिक ऐलन ट्यूरिंग के नाम पर इस बुनियादी कंप्यूटर को ट्यूरिंग मशीन कहा जाता है, जो किसी भी तरह के (यूनिवर्सल) कंप्यूटेशन का मॉडल पेश करती है। जाहिर है कि सिद्धांत में एक जैसी होने के बावजूद हर मशीन के काम करने का तरीका अलग होता है। यानी कंप्यूटर प्रोग्राम कीबोर्ड से लिखे जाते हैं और बिजली के सर्किटों से चलते हैं, पर दिमाग न्यूरॉन सिग्नलों (जैव-रासायनिक) से चलता है। अगर दोनों एक ही जैसे काम (फंकशन) कर रहे हैं तो व्यावहारिक तौर पर दोनों को एक ही माना जा सकता है। मन और जिस्म में फर्क करने वाले इस खयाल को फंकशनलिज़्म (Functionalism) कहा जाता है। इसके मुताबिक संज्ञान किसी एक मशीन या दिमाग के दायरे में बँधा नहीं है, बल्कि महज एक ढाँचे की (दिमाग या कंप्यूटर का हार्डवेयर)  मदद से यह सक्रिय हो रहा है। यानी कुछ संकेतों (लॉजिक गेट) की मदद से हम सही समझ पाते हैं और जीवन की गाड़ी चल पड़ती है। जहाँ तक खयाली दुनिया में गोते लगाने की बात है, इसके लिए ट्यूरिंग ने एक टेस्ट सोचा। अगर किसी मशीन से इंसान को यह भ्रम हो कि वो वाकई में मशीन नहीं, बल्कि कोई इंसान है, तो वो मशीन ट्यूरिंग टेस्ट पास कर जाएगी। 1990 में इस आधार पर एक पुरस्कार की घोषणा हुई कि कोई भी ट्यूरिंग टेस्ट पास करने वाली पहली मशीन बना ले तो उसे एक लाख अमेरिकन डॉलर दिए जाएँगे। अभी तक यह पुरस्कार किसी को नहीं मिला है। इस बात पर विवाद है कि यह टेस्ट पूरी तरह इंसान और मशीन के बीच बातचीत पर निर्भर है यानी यह महज भाषा के पक्ष पर आधारित है। अगर कोई मशीन भाषा की तमाम जटिलताओं में माहिर हो जाए तो हो सकता है कि वह ट्यूरिंग टेस्ट पास कर जाए, पर क्या हम उसे इंटेलिजेंट कह सकते हैं?

ए-आई में जटिलता या कंप्लेक्सिटी (Complexity) थीओरी नामक विज्ञान की धारा का भी इस्तेमाल हुआ है, जिसमें किसी चीज़ में विकसित हुए जटिल खाके के मुताबिक उसकी फितरत में बदलाव आता है। मसलन एक छोटी चिंगारी आसपास की जलनेवाली चीज़ों में आग लगा सकती है, पर एक निश्चित आकार के बाद ही वह दावानल बन भड़क सकती है। इसी तरह जब बच्चे रेत का ढेर बनाते हैं, तो देर तक वह पिरामिड सा बढ़ता है, पर एक हद के बाद वह भरभराकर गिर पड़ता है। इसे इमर्जेंट यानी उभरता गुण कहा जाता है, ऐसा गुण जो किसी चीज़ के अलग-अलग टुकड़ों में नहीं होता मगर पूरी चीज़ में उभरकर दिखता है। कुदरत में कई टुकड़ों के अपने-आप एक खाके में जुड़कर कुछ अनोखा होने की कई मिसालें हैं, जिसे सेल्फ-ऑर्गनाइज़ेशन (खुद-को संगठित करना) कहा जाता है। पिछले कई दशकों में इस सेक्टर में, खास तौर पर जैविक मिसालों पर, बहुत शोध हुआ है। किसी चीज़ में अचानक उभरी फितरत को उसके सामान्य टुकड़ों की प्रकृति को जानकर नहीं समझा जा सकता है। ए-आई में एक सोच यह है कि इंटेलिजेंस एक इमर्जेंट या कई टुकड़ों के एक हद तक जुड़ जाने से बनी जटिल बात है। जीन्स को जानकर हम यह तो जान लेते हैं कि हम जो हैं, वह कैसे मुमकिन हुआ, पर संज्ञान को हम इस तरह नहीं जान सकते। सर्वांगीण समझ कुछ और है, जो इमर्जेंट गुण है। जाहिर है कि बगैर मशीन के समझ तैयार होना नामुमकिन है, पर मशीन बनने से ही समझ अपने आप बन जाए, ऐसा नहीं है। इसके लिए किसी सही प्रोग्राम लिखे जाने की ज़रूरत होगी। तो क्या हम फिर मन और जिस्म को अलग मान रहे हैं? दिमागी पहेलियाँ क्या महज प्रोग्राम की खेल हैं? इन विवादों पर हम अगले लेखों में चर्चा करेंगे।

*

Artificial Intelligence, ए-आई यानी कृत्रिम बुद्धि - 3

पिछले लेख में हमने कंप्यूटर और इंसानी दिमाग में व्यावहारिक गुणों में एकरूपता का जिक्र किया था। ए-आई का आखिरी मक़सद यह है कि एक दिन दिमाग में से हरेक जैविक न्यूरॉन की जगह इलेक्ट्रॉनिक न्यूरॉन (लॉजिक गेट से गुजरते इलेक्ट्रॉन समूह) रख दिया जाएगा, जिससे इंसान की ही छवि में मशीन बन जाएगी। यह कल्पना बेमानी नहीं है। आखिर कंप्यूटेशन के नज़रिए से जैविक न्यूरॉन और इलेक्ट्रॉनिक न्यूरॉन एकरूप हैं। पर क्या एक-एक कर  इलेक्ट्रॉनिक न्यूरॉन को लाने पर चेतना वैसी बनी रहेगी जैसी कि इंसान में होती है? 

मशीन में ज्ञान रोपने के लिए यह सोचना लाजिमी है कि ज्ञान क्या है, इसे कैसे पाते हैं, कैसे सँजोते हैं, आदि। लिहाज़ा दार्शनिक चिंतन ए-आई का अहम हिस्सा है। दार्शनिक सवालों के जवाब हमेशा नहीं मिलते, पर इससे ए-आई विज्ञानी घबराते नहीं हैं। तर्क पर आधारित सोच का खाका कामयाबी की ओर ले जाता है। अब तक कई तरह की कामयाब मशीनें बन चुकी हैं - बेजोड़ शतरंज खिलाड़ी, सामान्य समझ दिखलाते और आम सवालों का जवाब देते, चलते- फिरते, छोटे-मोटे काम करते रोबोट;  जैसे कैमेरा से लिए गए फोटो में क़ैद कई सारी चीज़ों को विस्तार से समझ लेने (कंप्यूटर विज़न) वाले रोबोट, आदि। इन सभी में परिवेश की जानकारी लेते एजेंट हैं, जो जानकारी को संज्ञान के स्तर तक सँजोतेे हैं और इस आधार पर उचित कदम उठाते हैं। यानी एहसास कर पाने और कदम उठाने के बीच संज्ञान एक पुल की तरह है। ए-आई की तरक्की इसी पुल के लगातार मजबूत होते रहने की कहानी है। बेशक यह तरक्की दायरे में बँधे सवालों पर ज्यादा और बुनियादी सवालों पर कम केंद्रित है। मसलन मशीन की मदद से एक से दूसरी ज़बान में तर्जुमा कभी मशीन में शब्दकोश डालने जैसा आसान प्रोजेक्ट माना जाता था, पर बाद में समझ बनी कि यह बहुत मुश्किल काम है। मशीनों में डालने के लिए तमाम किस्म के तथ्यों को इकट्ठा करने पर भी काम हुआ, जिसे साइक (CYC – encyclopedia से) प्रोजेक्ट कहते हैं। तथ्यों की जानकारी पर्याप्त न हो तो मशीन की क्षमता इंसान के आसपास भी नहीं आ सकती। मसलन मेडिकल तथ्यों से लैस मशीन एक खटारा गाड़ी को बीमार मानकर दवाएँ लेने को कह सकती है, जो इंसान कभी नहीं करेगा। इंसानी दिमाग दसों हजारों सालों के जैविक और सांस्कृतिक विकास से बना है। जीवनकाल में वह लगातार सीखता रहता है, जिससे वह आसानी से किसी बात का प्रसंग समझ लेता है। यह सब मशीन में डाल पाना आसान नहीं है। 

मुश्किल आसान करने के लिए कुछ आम तरीके अपनाए जाते हैं, जैसे काम को सरल टुकड़ों में बाँटना। कई लोग मानते हैं कि दिमाग दरअसल कई छोटे कंप्यूटरों का समूह है, जिनमें से कुछ खुद-मुख्तार हैं। नौवें दशक में जेरी फोदोर ने कहा किमानस खास काम के लिए बने अलग-अलग टुकड़ों से बना है। पर कौन सा टुकड़ा कहाँ है, यह कहना मुश्किल है। हर टुकड़े पर आधारित मशीन बनाई जा सकती है, जैसे भाषा-ज्ञान, गणित के सवाल, चित्रकला, आदि अलग-अलग काम के लिए मॉडल रोबोट बनाए जा सकते हैं और धीरे-धीरे सबको साथ रख कर एक से ज्यादा काम कर सकने वाली मशीनें भी बनाई जा सकती हैं। साथ ही दिमाग के बारे में भी समझ बढ़ती चलेगी। 

इंसान के दिमाग में न्यूरल तंत्रिकाओं का एक विशाल जाल सा काम करता है, जिसमें एक से दूसरे न्यूरॉन के बीच तेज़ी से संवाद चलता रहता है। यह जैवरासायनिक वजहों से हो रहे बिजली के प्रवाह से होता है। इसी आधार पर वैज्ञानिकों ने कनेक्शनिस्ट (connectionist) मॉडल बनाए हैं, जो गणनाओं के लिए प्रभावी साबित हुए हैं। ऐसे मॉडल को कृत्रिम न्यूरल नेटवर्क (ANN – artificial neural network) कहा जाता है। आम तौर पर कुदरत में लकीर पर चलने वाली यानी रैखिक घटनाएं नहीं होतीं, यानी किसी एक राशि (इनपुट) को किसी अनुपात में बढ़ाया जाए, तो कोई दूसरी राशि ठीक उसी अनुपात में घटे-बढ़े, ऐसा नहीं होता है। पर आसानी के लिए सीमित दायरे में रैखिक मॉडल बनाना आधुनिक विज्ञान की नींव रही है। इससे सर्वांगीण समझ नहीं बनती, पर कुदरत के बारे में बहुत सारी समझ ऐसे ही हमें मिली है। अब कंप्यूटर तेज़ी से गणनाएँ कर लेते हैं, इसलिए रैखिक मॉडल की जगह कनेक्शनिस्ट मॉडल ले रहे हैं। इनपुट और आउटपुट कई राशियों के बीच संबंधों के अनगिनत समीकरण हो सकते हैं। अनुमान के आधार पर समीकरण तय करें तो सही आउटपुट नहीं मिलता, पर जिन घटनाओं के बारे में जानकारी पहले से है, उनकी गणना में असलियत से जो फ़र्क दिखता है, उसे वापस इनपुट में शामिल कर फिर से गणना की जाए तो पहले से बेहतर समीकरण मिलते हैं। इसे बार-बार दुहराएँ यानी हर बार जो फ़र्क दिखे, उसे इनपुट में डालते जाएँ तो धीरे-धीरे सारे समीकरण सही हो जाएँगे। कल्पना करें कि आप सड़क पर चल रहे हैं और रास्ते में गड्ढा दिखता है। दिमाग इस बात को दर्ज करता है और राह बदलता है। एक नवजात बच्चा अपने सामने रखी किसी चीज़ की सही दूरी तय नहीं कर पाता तो वह उँगली से उसे छूने की कोशिश करता है। दो-चार कोशिशों के बाद वह सही दिशा में सही दूरी तक पहुँच जाता है। इसी तरह मशीन को भी सिखाया जाता है। इसे मशीन लर्निंग (ML – machine learning) कहा जाता है। सिर्फ बेहतर रोबोट बनाने के लिए ही नहीं, बल्कि विज्ञान की कई पहेलियों को हल करने में ए-आई का आम इस्तेमाल इसी तरीके से हो रहा है और यह बड़ी तेज़ी से बढ़ रहा है। इसकी मदद से नई दवाएँ बनाई गई हैं, कोरोना जैसी बीमारी के फैलने को समझा गया है और तमाम किस्म के सवालों का हल किया गया है। बीमा कंपनियाँ और स्टॉक मार्केट इसका भारी इस्तेमाल कर रहे हैं। एक तरीका यह भी है कि समीकरणों के एक समूह के बाद दूसरे और समीकरण समूहों को हल किया जाए – इन समूहों को तह (layer) कहते हैं। कई तहों वाले नेटवर्क को डीप लर्निंग (deep learning) कहा जाता है। नेटवर्क के विवरण के लिए तंत्रिका-विज्ञान से लिए गए एक्सन (axon – न्यूरॉन में बिजली के प्रवाह के पड़ाव) जैसे लफ़्ज़ों का इस्तेमाल होता है। गौरतलब है कि जिस्म में न्यूरॉन बिजली के आवेग प्रवाहित करते हैं और मशीन में इन की जगह गणना की राशियाँ हैं। पर बुनियादी तौर पर उनमेें एकरूपता है। जैविक न्यूरॉन एक सेकंड में हज़ार से ज्यादा सिग्नल नहीं भेज सकते। इंसान के दिमाग की तुलना में कंप्यूटर करोड़ गुना ज्यादा तेज़ी से गणना कर पाते हैं, फिर भी आज तक इंसान जैसी चेतना किसी मशीन में नहीं आ पाई है। इंसान का दिमाग पल भर में जटिल फैसले ले सकता है; गणनाओं में करोड़ गुना तेज़ होने के बावजूद कंप्यूटर वैसा नहीं कर पाते हैं। सड़क पर कोई परिचित मिले तो उसे पहचानने में हमें पल भर लगता है, जबकि कंप्यूटर जानकारी दर्ज करता हुआ अपनी गणनाओं में उलझा रहता है और इसमें कुछ पल लग सकते हैं। कुदरत में बहुत सारी गणनाएँ समांतर चलती हैं। जब हम कुछ देखते-सुनते हैं तो एक साथ बहुत सारी बातें दिमाग में दर्ज हो रही होती हैं, भले ही सारी जानकारी हमारे काम की न हो। जो छवि दिमाग में बनती है, उस जानकारी को बाँट कर अनगिनत कोनों में सर्वांगीण रूप से दर्ज किया जाता है। आधुनिक कंप्यूटर भी समांतर प्रोसेसिंग करते हैं। मोबाइल फ़ोन तक में एक से ज्यादा प्रोसेसर आने लगे हैं। ANN में, खास तौर पर डीप लर्निंग में इस बात का भरपूर फायदा उठाया जाता है। पर इस दौड़ में अभी तक कुदरत आगे है। दूसरी बात यह कि कुदरत में कुछ भी जरा सी चोट लगने पर देर-सबेर अपने आप ठीक हो जाता है, पर मशीनों में यह क्षमता बहुत ही कम है। 

आज कंप्यूटर जिस तरह के अर्द्धचालक सिलिकॉन के विज्ञान पर आधारित हैं, उसमें एक हद से आगे बढ़ना नामुमकिन है। मशहूर वैज्ञानिक पेनरोज़ का कहना है कि तरक्की के लिए क्वांटम गतिकी पर आधारित कंप्यूटेशन अपनाना होगा। आज इस्तेमाल होने वाले कंप्यूटरों को क्लासिकल या शास्त्रीय कहा जाता है, हालाँकि अर्द्धचालकता या सेमी-कंडक्टर की भौतिकी में भी क्वांटम मेकानिक्स का इस्तेमाल होता है। आज के माइक्रो-प्रोसेसर या चिप में ट्रांज़िस्टर इतने छोटे हो गए हैं कि वे कुछेक अणुओं के आकार तक पहुँच गए हैं। इससे आगे कंप्यूटरों की सूचना जमा करने की क्षमता या रफ्तार में ज्यादा बढ़त मुमकिन न होगी। पिछले तीन दशकों से एक नई दिशा विकसित हुई है, जिसे  क्वांटम कंप्यूटर कहते हैं। इसमें अणु-परमाणुओं के खास गुणों को इस्तेमाल होता है, जिन्हें क्लासिकल भौतिकी से क़तई समझा नहीं जा सकता है। पेनरोज़ का मत है कि हमें जिस्म और मानस को अलग करने की ज़रूरत नहीं है, पर चेतना के लिए जो इमर्जेंट या उभरते गुण चाहिए वे क्वांटम गतिकी से ही मुमकिन होंगे। यानी आज के कंप्यूटरों का इस्तेमाल कर हम मशीन में इंटेलिजेंस नहीं ला सकते हैं। पेनरोज़ गोएडेल के मशहूर थीओरेम का सहारा लेते हैं, जिसके मुताबिक गणित के कुछ सच ऐसे हैं, जिन्हें गणनाओं के जरिए सिद्ध नहीं किया जा सकता है। चूँकि कंप्यूटर से निकला हर नतीजा गणनाओं से आता है, इसलिए वो ऐसी हर बात नहीं कर सकते जो इंसान कर सकते हैं। यानी चेतना में गणना से अलग कुछ है, जिसकी खोज हमें करनी है। ये बातें रहस्यवाद जैसी लगती हैं। 

ए-आई अब आधी सदी की उम्र गुजार चुका है। जो समझ बनी है, वह यह कि जिस्म के बिना सोचने वाला मानस नहीं होता, इसी तरह मशीन अपने आप में सोच नहीं सकती। पर इंसान की सोच पूरी तरह खुद-मुख्तार नहीं होती है, वह एक बड़े परिवेश में ही फलती-फूलती है। मुमकिन है कि इसी तरह मशीन को भी परिवेश में फलने-फूलने लायक बनाना होगा। जैविक विकास से मिली सीख मुताबिक छोटी-मशीनों के साथ ऐसे प्रयोग हो रहे हैं। कोशिश यह है कि छोटे स्तर पर मिली कामयाबी को धीर-धीरे बड़े पैमाने पर विकसित किया जाए। ए-आई विज्ञानी आज भी दर्प के साथ भविष्यवाणियाँ करते हैं, और वक्त गुजरने के साथ वो ग़लत साबित होते रहते हैं। फिर भी ए-आई हमारे जीवन का हिस्सा बन चुका है। रोबोट मशीनें और कंप्यूटर चालित हिसाब-किताब हर पल हमारे साथ हैं। अगली पीढ़ियाँ ही जान पाएँगी कि रोबोट इंसान से ज्यादा दानिशमंद होंगे या नहीं। 

Artificial Intelligence, ए-आई यानी कृत्रिम बुद्धि- 4

पिछले लेखों में हमने ए-आई के विज्ञान और दर्शन के पक्ष पर बात रखी थी। आम तौर पर लोग वैज्ञानिक खोज के व्यावहारिक इस्तेमाल को टेक्नॉलोजी कह देते हैं। दरअसल बहुत सारी वैज्ञानिक जाँच और खोज पहले से मौजूद टेक्नॉलोजी की मदद से ही मुमकिन हो पाती है। ए-आई भी ऐसा एक मौजूँ है जिसमें विज्ञान और टेक्नॉलोजी गड्ड-मड्ड हैं। टेक्नॉलोजी महज तकनीक या औजार नहीं होती, बल्कि एक सांगठनिक खाके के साथ ही यह वजूद में आती है। और जैसा किसी भी टेक्नॉलोजी के साथ होता है, जब यह सही तरीके से काम नहीं करती है तो भयंकर हादसे तक हो जाते हैं। जो सामाजिक या सियासी खाका टेक्नॉलोजी के साथ जुड़ा होता है, उसके निहित स्वार्थ तय करते हैं कि इसका फायदा किसे मिले और नुकसान हो तो किसे हो। ए-आई के साथ भी कुछ ऐसा ही है। 

ए-आई के कई व्यावहारिक उपयोगों में एक यह है कि किसी तस्वीर में से चीज़ों की पहचान जल्द से जल्द कैसे की जाए। खास तौर पर किसी शख्स की पहचान करना आज ए-आई का आम इस्तेमाल बन गया है। दुनिया भर में सरकारें इस तकनीक का इस्तेमाल करती हैं। हमारे मुल्क में भी दिल्ली, बेंगलूरु जैसे बड़े हवाई अड्डों पर शक्ल की पहचान के कैमरे लगे हुए हैं, जिनके जरिए आप की तस्वीर कंप्यूटर में क़ैद हो जाती है। फिलहाल यह स्वैच्छिक तौर पर हो रहा है। यह महज फोटो खींचने या वीडियो बनाने वाली बात नहीं है, जो सी-सी-टी-वी (closed-circuit television) से होता है। जैसे हर शख्स का खास डी एन ए होता है, या हाथ और उँगलियों की खास लकीरें होती हैं, वैसे ही चेहरे की खास पहचान होती है। शक्ल में हाड़-मांस-चमड़े के उतार-चढ़ाव को आँकड़ों में दर्ज़ कर लिया जाता है। इसे मशीन विज़न (vision) सिस्टम कहा जाता है। आम नागरिकों को इससे कोई फ़र्क नहीं पड़ता। पर अपने विरोधियों पर नज़र रखने के लिए सरकारें इस टेक्नॉलोजी का भरपूर इस्तेमाल कर रही हैं। अगर यह महज आतंकवादियों की पहचान करने तक सीमित होता, तो अच्छी बात होती। खतरनाक बात यह है कि अगर दर्ज़ सूचना में ग़लती रह गई हो और इस वजह से किसी की ग़लत पहचान हो तो इसका भयंकर नतीजा होता है। इसकी एक मिसाल ड्रोन (बिना चालक के हवाई वाहन) के जरिए बमबारी या मिसाइलें दागने का है। 

सोचने पर लगता है कि शक्ल से पहचान के लिए इकट्ठा किए गए आँकड़ों में कुछ ज्यादा तो होगा नहीं, आखिर आँखें, नाक, होंठ, यही तो है - या मूँछ है या नहीं, आदि। पर असल में शक्ल में उतार-चढ़ाव की जटिलता कल्पना से भी ज्यादा है। हम अक्सर किसी एक आदमी को देखकर किसी और के बारे में सोचने लगते हैं। कभी-कभी तो ग़लती से किसी को कोई और समझ बैठते हैं। यानी बात सिर्फ शक्ल को ज़हन में दर्ज़ करने की नहीं है, बाद में याददाश्त भी होनी चाहिए कि दर्ज़ की हुई पहचान किसकी थी। औसतन इंसान की शक्ल का फैलाव तक़रीबन आधा फुट की भुजा के वर्ग के आकार का है, और साथ में तीसरा आयाम उतार-चढ़ाव का है। एक ग्राफ पेपर पर इसे दिखाया जा सकता है। अगर ग्राफ में सबसे छोटा वर्ग 1  वर्ग मि.मी. का है तो फैलाव को हम 150X150 या 22500 वर्गों में बाँट सकते हैं। हर छोटे वर्ग में रंगों की मदद से उतार-चढ़ाव दिखाया जा सकता है। अगर हम 16 रंगों का इस्तेमाल करें तो यह  22500X16=360000 आँकड़े हो गए। इसके बाद बात आती है चमड़े के बनावट या गठन की। हर बिंदु पर यह बदलती है। बढ़ती उम्र के साथ इसमें बदलाव आते हैं। लब्बोलुबाब यह कि शक्ल की पहचान जितना आसान मसला लगता है, उतना है नहीं। जितनी जटिलता होगी, उतने ही ज्यादा आँकड़े होंगे और उनका हिसाब रख पाना उतना ही धीमा होगा। इसलिए शक्ल की पहचान में तक़रीबन सही नतीजे पर पहुँचना हाल में ही मुमकिन हो पाया है। इसके लिए न्यूरल नेटवर्क और डीप लर्निंग का इस्तेमाल हो रहा है। इसे मुख्यत: चार चरणों में रखा जा सकता है - पहले चरण में शक्ल की तस्वीर लेकर उसे आँकड़ों में दर्ज़ किया जाता है। जिस तरह हमारे दिमाग में किसी छवि को सँजोए रखने के लिए उसे टुकड़ों में बाँट कर अलग-अलग कोनों में जमा रखा जाता है, वैसे ही कंप्यूटर में भी छवि को अलग-अलग खासियतों में बाँट कर दर्ज़ किया जाता है। दूसरे चरण में पूरी शक्ल को एक से दूसरी ओर तक ट्रैक करते हुए टुकड़ों में छोटे से छोटे हिस्से की तस्वीर ली जाती है। इसे पहले पूरी तस्वीर से दर्ज़ किए आँकड़ों के पूरक की तरह मान सकते हैं। तीसरे चरण में आँकड़ों को इस तरह बाँटा जाता है (सेग्मेंटेशन – segmentation) ताकि बाद में उन्हें किसी मॉडल में शामिल करने में आसानी हो। मसलन अगर किसी कैनवस के हर हिस्से में अलग-अलग अनुपात में नीला और पीला रंग मिलाकर  बिखेरा गया है, तो हमें अलग-अलग गहराई में बिखरे हरे रंग की तस्वीर दिखती है। हम इसे दो सूचियों में बाँटकर आँकड़ों में दर्ज़ कर सकते हैं। एक सूची नीले रंग के और दूसरी पीले रंग के अनुपात को दर्ज़ करेगी। बाद में हम इसी अनुपात में दोनों रंग मिलाकर मूल तस्वीर फिर से बना सकते हैं। आखिरी चरण दर्ज़ आँकड़ों से मूल शक्ल को तैयार करने का है (रीस्टोरेशन – restoration)।

ऐसा लगता है कि शक्ल की पहचान इतना भी मुश्किल काम नहीं है। पर आज तक ए-आई के शोध में यह सबसे जटिल और चुनौतियों से भरी पहेलियों में से एक है। ऊपर बताए हर चरण में जटिलताएँ हैं। मसलन ट्रैकिंग को ही लें। जब कैमरा ट्रैक कर रहा है, साँस लेने-छोड़ने जैसी कई वजहों से शक्ल में चमड़े का खिंचाव बदल सकता है। कैमरे में तस्वीर का बनना रोशनी पर निर्भर है। किस तरह का प्रकाश कहीं से शक्ल में पहुँच रहा है, उसमें कितना दूसरी चीज़ों से बिखर कर आ रहा है, ये बातें ली गई तस्वीर का मान तय करती हैं। इसलिए एक ही चीज़ पर दुहराई गई ट्रैकिंग में हर बार अलग आँकड़े दर्ज़ होते हैं। तीसरे और चौथे चरणों में आँकड़ों को सँजोने और उनकी काट-छाँट में कैसे नेटवर्क इस्तेमाल किए गए हैं, इससे आँकड़ों की प्रोसेसिंग पर फ़र्क पड़ता है। यानी मूल शक्ल को तैयार करने में ग़लत नतीजे मिलना मुमकिन है।

शक्ल की पहचान सिर्फ इंसान के लिए नहीं, बल्कि कई तरह के संदर्भों में अहम है। जैसे बिना ड्राइवर वाली गाड़ी के कैमरों में जो कुछ दर्ज़ होता रहता है, उसे पहले से दर्ज़ तस्वीरों के साथ तुलना कर हिसाब लगाया जता है कि गाड़ी को आगे बढ़ना है या नहीं, और हाँ तो कितनी रफ्तार से और कैसी सावधानियों के साथ बढ़ना है आदि। पश्चिमी मुल्कों में ऐसी गाड़ियों के टेस्ट-ड्राइव के दौरान एकाध हादसे हुए हैं, यानी मशीन द्वारा सामने आ रही चीजों की सही पहचान नहीं हो पाई है। 

कुदरती चीज़ों को कंप्यूटरों में दर्ज़ कर बाद में उसकी सही पहचान कर पाना इसलिए भी मुश्किल है कि कुदरत में बहुत सारी बातें संजोग से होती हैं। एक गाड़ी के सामने पड़ा हुआ छोटा बेजान पत्थर कभी अचानक उछल सकता है, क्योंकि कहीँ और से कुछ आ टकराए या पत्थर के अंदर किसी छेद में कुछ फूट पड़े - ऐसी कई बातें अचानक घट सकती हैं, जिनका हिसाब पहले से नहीं रखा जा सकता है। इसलिए न्यूरल नेटवर्क की गणनाओं में संभाविता के आधार पर (probabilistic) बदलाव किए जाते हैं। ए-आई के शोध में यह भी एक चुनौतियों भरा काम है, क्योंकि संजोग को गणना में शामिल करने का मतलब अक्सर यह होता है कि आँकड़ों के कई समूह इकट्ठे किए जाएँ और उनका सांख्यिकी (statistics) के क़ायदों का इस्तेमाल कर (जैसे औसत मान आदि) विश्लेषण किया जाए। इससे आँकड़ों की तादाद कई गुना बढ़ जाती है। दूसरे गणितीय तरीकों को भी अपनाया जाता है, पर ऐसी हर कोशिश नई चुनौतियाँ पेश करता है। 

कोई भी टेक्नॉलोजी निरपेक्ष नहीं होती है। इसलिए हर टेक्नॉलोजी के विकास में ज्यादा से ज्यादा लोगों की भागीदारी होनी चाहिए ताकि लोग अपने भले-बुरे का फैसला कर सकें और विकास को सही दिशा दे सकें। ए-आई के ग़लत इस्तेमाल से अक्सर बड़ी तबाही हुई है। शक्ल की पहचान से आम जनता को एक दायरे में बाँध रखना लोकतांत्रिक मूल्यों के खिलाफ जाता है। आज जो जंगें लड़ी जाती हैं, उनमें पहले की जंगों जैसी आमने-सामने की मुठभेड़ नहीं होती। आज धरती के एक ओर से उड़कर ड्रोन दूसरे छोर तक पहुँचते हैं। उनमें लगे कैमरों से तस्वीरें पल भर में वापस कंट्रोल-रूम तक भेजी जाती हैं, जहाँ फटाफट कंप्यूटरों में ए-आई द्वारा बमबारी का निशाना तय किया जाता है और मिसाइल दाग दी जाती है। जाहिर है कि मिसाइल चलाने वालों और टार्गेट के बीच न सिर्फ बहुत बड़ी भौतिक, बल्कि विशाल मनोवैज्ञानिक दूरी होती है। पिछले दशक में किसी ज़मीनी जंग में शामिल एक फौजी से भी ज्यादा हत्याएँ ड्रोन और मिसाइल चलाने वाले आभासी पाइलटों ने की हैं। अक्सर इसमें फौजी टार्गेट की जगह आम नागरिक मारे जाते हैं। हाल में अफग़ानिस्तान में अमेरिकी ड्रोन द्वारा ग़लत निशाना तय होने की वजह से एक दर्जन से ज्यादा आम नागरिक मारे गए थे। आम तौर से ऐसे ड्रोन चलाने वाले घोर मानसिक तकलीफों से गुजरते हैं। कई तो काम छोड़कर जंगलों में जा छिपते हैं, क्योंकि निर्दोष नागरिकों की, जिनमें अक्सर बच्चे भी होते हैं, हत्या का बोझ मानसिक घाव बनकर उन्हें ताज़िंदगी कुरेदता रहता है। 

ऐसी तमाम बातें दुनिया भर में लोकतांत्रिक सोच रखने वाले लोगों को परेशान करती रही हैं। ए-आई का शोर मोहक है, पर इसके नुकसान कम नहीं हैं। इस बारे में सचेत रहना हरेक नागरिक की जिम्मेदारी है। 

Comments

Popular posts from this blog

मृत्यु-नाद

('अकार' पत्रिका के ताज़ा अंक में आया आलेख) ' मौत का एक दिन मुअय्यन है / नींद क्यूँ रात भर नहीं आती ' - मिर्ज़ा ग़ालिब ' काल , तुझसे होड़ है मेरी ׃ अपराजित तू— / तुझमें अपराजित मैं वास करूँ। /  इसीलिए तेरे हृदय में समा रहा हूँ ' - शमशेर बहादुर सिंह ; हिन्दी कवि ' मैं जा सकता हूं / जिस किसी सिम्त जा सकता हूं / लेकिन क्यों जाऊं ?’ - शक्ति चट्टोपाध्याय , बांग्ला कवि ' लगता है कि सब ख़त्म हो गया / लगता है कि सूरज छिप गया / दरअसल भोर  हुई है / जब कब्र में क़ैद हो गए  तभी रूह आज़ाद होती है - जलालुद्दीन रूमी हमारी हर सोच जीवन - केंद्रिक है , पर किसी जीव के जन्म लेने पर कवियों - कलाकारों ने जितना सृजन किया है , उससे कहीं ज्यादा काम जीवन के ख़त्म होने पर मिलता है। मृत्यु पर टिप्पणियाँ संस्कृति - सापेक्ष होती हैं , यानी मौत पर हर समाज में औरों से अलग खास नज़रिया होता है। फिर भी इस पर एक स्पष्ट सार्वभौमिक आख्यान है। जीवन की सभी अच्छी बातें तभी होती हैं जब हम जीवित होते हैं। हर जीव का एक दिन मरना तय है , देर - सबेर हम सब को मौत का सामना करना है , और मरने पर हम निष्क्रिय...

फताड़ू के नबारुण

('अकार' के ताज़ा अंक में प्रकाशित) 'अक्सर आलोचक उसमें अनुशासन की कमी की बात करते हैं। अरे सालो, वो फिल्म का ग्रामर बना रहा है। यह ग्रामर सीखो। ... घिनौनी तबाह हो चुकी किसी चीज़ को खूबसूरत नहीं बनाया जा सकता। ... इंसान के प्रति विश्वसनीय होना, ग़रीब के प्रति ईमानदार होना, यह कला की शर्त है। पैसे-वालों के साथ खुशमिज़ाजी से कला नहीं बनती। पोलिटिकली करेक्ट होना दलाली है। I stand with the left wing art, no further left than the heart – वामपंथी आर्ट के साथ हूँ, पर अपने हार्ट (दिल) से ज़्यादा वामी नहीं हूँ। इस सोच को क़ुबूल करना, क़ुबूल करते-करते एक दिन मर जाना - यही कला है। पोलिटिकली करेक्ट और कल्चरली करेक्ट बांगाली बर्बाद हों, उनकी आधुनिकता बर्बाद हो। हमारे पास खोने को कुछ नहीं है, सिवाय अपनी बेड़ियों और पोलिटिकली करेक्ट होने के।' यू-ट्यूब पर ऋत्विक घटक पर नबारुण भट्टाचार्य के व्याख्यान के कई वीडियो में से एक देखते हुए एकबारगी एक किशोर सा कह उठता हूँ - नबारुण! नबारुण! 1 व्याख्यान के अंत में ऋत्विक के साथ अपनी बहस याद करते हुए वह रो पड़ता है और अंजाने ही मैं साथ रोने लगता हू...

 स्त्री-दर्पण

 स्त्री-दर्पण ने फेसबुक में पुरुष कवियों की स्त्री विषयक कविताएं इकट्टी करने की मुहिम चलाई है। इसी सिलसिले में मेरी कविताएँ भी आई हैं। नीचे उनका पोस्ट डाल रहा हूँ।  “पुरुष कवि : स्त्री विषयक कविता” ----------------- मित्रो, पिछले चार साल से आप स्त्री दर्पण की गतिविधियों को देखते आ रहे हैं। आपने देखा होगा कि हमने लेखिकाओं पर केंद्रित कई कार्यक्रम किये और स्त्री विमर्श से संबंधित टिप्पणियां और रचनाएं पेश की लेकिन हमारा यह भी मानना है कि कोई भी स्त्री विमर्श तब तक पूरा नहीं होता जब तक इस लड़ाई में पुरुष शामिल न हों। जब तक पुरुषों द्वारा लिखे गए स्त्री विषयक साहित्य को शामिल न किया जाए हमारी यह लड़ाई अधूरी है, हम जीत नहीं पाएंगे। इस संघर्ष में पुरुषों को बदलना भी है और हमारा साथ देना भी है। हमारा विरोध पितृसत्तात्मक समाज से है न कि पुरुष विशेष से इसलिए अब हम स्त्री दर्पण पर उन पुरुष रचनाकारों की रचनाएं भी पेश करेंगे जिन्होंने अपनी रचनाओं में स्त्रियों की मुक्ति के बारे सोचा है। इस क्रम में हम हिंदी की सभी पीढ़ियों के कवियों की स्त्री विषयक कविताएं आपके सामने पेश करेंगे। हम अपन...